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Abstract 

The aim of the presented work was the development of a tracking algorithm for a stereoscopic camera setup 
equipped with an additional inertial sensor.  The input of the algorithm consists of the image sequence, angular 
velocity and linear acceleration vectors measured by the inertial sensor. The main assumption of the project was 
fusion of data streams from both sources to obtain more accurate ego-motion estimation. An electronic module 
for recording the inertial sensor data was built. Inertial measurements allowed a coarse estimation of the image 
motion field that has reduced its search range by standard image-based methods. Continuous tracking of the 
camera motion has been achieved (including moments of image information loss). Results of the presented study 
are being implemented in a currently developed obstacle avoidance system for visually impaired pedestrians. 
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1. Introduction 
 
 There are a lot of technical fields that utilize automatic navigation using video-based 
scene analysis systems, such as creating maps based on aerial and satellite imagery, robotics 
or mobile systems for synthetic presentation of information in the context of the location in 
the scene (so-called augmented reality systems). An example of such an application is the 
auditory obstacle presentation system for blind pedestrians under development at the 
Technical University of Łódź.  
 We can distinguish between global navigation, which consists in determining the 
geographical position, and local navigation. Local navigation is a determination of one’s 
position relative to the local reference system associated with the static scene (called 
navigation frame, n-frame [1]) or estimation of scene motion in the reference system 
associated with the mobile system realizing the task of navigation (called body frame,  
b-frame). Estimation of scene motion in the b-frame is used, among other things, for tracking 
objects in image sequences, which is the main objective of the developed scene analysis 
system. 
 
2. Local navigation on the basis of a stereoscopic image sequence 
  
 A number of basic dependencies and assumptions have been made to allow the 
development and verification of the algorithm for motion estimation of the stereoscopic 
camera. The right camera is placed at the origin of the b-frame reference, denoted further by 
index C. The location of the camera in the n-frame is described by a rigid body motion 
equation [2]. The coordinates of any point [X,Y,Z]T

W from the surrounding three-dimensional 
scene, in the local n-frame reference associated with the Earth’s surface, and designated by 
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index W, can be related by the following formula to its coordinates in the camera frame of 
reference C: 
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RWC is the rotation matrix of the camera, TWC is the translation vector. The above dependence 
allows to determine the relative displacement of the cameras in the scene based on the 
estimation of displacements of static objects in the C reference associated with the camera.  
A new position of the point from the surrounding static scene (resulting from the motion of 
the video system) can be described by the equation: 
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RC is the rotation matrix of the scene, TC is the translation vector of the scene, the index C 
indicates the reference system associated with the camera, P - initial position,  K – final 
position. Further dependences are described in the three-dimensional reference system 
associated with the initial position of the camera and the index C is omitted. Let the position 
of P and K be related to consecutive images of a sequence. Assuming that the change of 
position and orientation of the stereovision system is small between P and K, equation (2) can 
be approximated by the relation: 
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α, β i γ  are the angles of the camera rotation around the axes X, Y and Z, [U V W]T is the 
translation vector of the camera in the scene (Fig. 1). The minus sign before the translational 
component means that it is the result of camera movement (egomotion [3]) in a static scene, 
not the scene itself. The increment of coordinates of a point between successive images is 
equal: 
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After we apply the projective transformation for the pinhole camera, coordinates (x,y) of the 
scene point image are obtained: 

 
Z

fY
y

Z

fX
x == ; , (5) 

where f is the focal length of the camera. 
 If the restriction is imposed on the minimum distance of the camera from objects in the 
recorded scene, the increase of the Z coordinate (scene depth) of observed points is small 
relative to its value. Then the projection of movement of any point of the surrounding scene 
on the camera sensor plane is a two-dimensional vector [u v]T, where [3]: 
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After substituting the increments of coordinates from (4) to (6) one obtains [4]: 

 













−−







+++−=

+







+−++−=

x
f

xy
f

f

y

Z

yWVf
v

yf
f

x

f

xy

Z

xWUf
u

γβα

γβα

2

2

. (7) 

The P index has been omitted because the initial position is always associated with the first of 
two consecutive frames of an analyzed sequence. 
 

 
 

Fig. 1. Projection of the movement of the point P in the 3D scene on the camera sensor plane.  
 
 In the canonical stereoscopic system the measure of the scene depth (Z coordinate) is 
calculated from the disparity, i.e. the displacement of the image of a point in the left camera 
relative to its image in the right one. The dependence of Z on the disparity d is given by: 

 
d

fB
Z = , (8) 

where B (basis) is the distance between the optical axes of the cameras. 
 After substituting (8) to (7), the image motion vector of any point in the static scene is 
described by the following dependence: 
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which is the sum of the translational and rotational component of video system movement in 
the scene. This allows an initial estimation of the motion vectors (motion field) of 
characteristic points in the image on the basis of the angular velocity and linear acceleration 
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measured by inertial sensors rigidly connected to the camera system. Predicting this 
movement is important in the case of the intended application in a head-mounted stereovision 
system, where the main causes of motion in the image are the rotations of the user’s head. 
Estimation of the camera egomotion vector requires a number of image analysis operations: 

− colour image conversion to greyscale, distortion correction and rectification, 
− detection of characteristic points – image corners and determination of their motion [3], 
− estimation of the disparity between the position of these points in the left and right 

image of stereoscopic pair with the use of a block matching technique [5], 
− estimation of corner displacements between consecutive images in the sequence. 

Image characteristic points, in this case corners, are detected with a standard Harris detector. 
More computationally efficient detectors were developed in recent years, such as SIFT or 
SURF [6]. They could replace the Harris detector, but the time reduction of the total algorithm 
would not be significant due to the other, more time consuming steps. Searching for every 
corner displacement between successive frames in the sequence [u v]T is realized by matching 
image blocks in a two-dimensional neighbourhood. The full search algorithm in a given 
neighbourhood of the point was implemented. The block matching procedure in two 
dimensions is the most time-consuming part of the whole algorithm and greatly benefits from 
the limitation of the search range. Initial estimation of the motion field in the image based on 
the readings of electronic, inertial sensors helps to predict the region of the search without 
increasing the computational effort. 
 
3. Algorithm for estimation of the egomotion vector of the camera system 
 
 Estimation of the camera egomotion vector is performed using a modified random 
sample consensus (RANSAC) algorithm. This is an iterative algorithm that allows to find the 
model parameters describing the measurements in the presence of noisy data or data not 
meeting the assumptions of the model (outliers). In the application of identification of the 
camera movement model parameters the algorithm reduces errors resulting from erroneous 
disparity or motion field estimation in the image, and due to the presence of moving objects in 
the scene [7]. The implemented algorithm operates according to the following scheme: 
 
Repeat N times: 
 { 
 select random  data from a set; 
  repeat M times: 
  { 
  determine the model based on the selected data; 
  for the next step select the data matching the model with an error less then T; 
  if the number of data is less than the threshold D, repeat the draw, 
  if the model is better than the one found previously, remember it; 
 } 
} 
 
In the application of camera egomotion estimation, measurement data are composed of the 
sets of motion vectors and the disparity of characteristic points in the image [x y u v d]T. The 
model is represented by a vector of egomotion parameters [U V W α β γ ]T. The parameters of 
the algorithm, arrived at after  a series of test sequences, are  set as follows: N=5, M=5, 
T=1[pixel], D=30. Estimation of the model parameters is done by minimizing the mean 
square error between the estimated and the measured motion of characteristic points in the 
image. 
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4. Estimation of the gravity vector 
 
 To allow the initial estimate of motion in the image [u v]T on the basis of signals from 
the inertial sensors it is necessary to estimate the gravity vector g in the reference frame 
associated with the cameras. After substitution of this vector from the triaxial accelerometer 
measurements, the aINS vector of dynamic linear acceleration a of the acquisition system is 
obtained, which allows to determine its speed [8]. An additional benefit of separating the 
vector g is the ability to classify one of the planes found in the disparity image as the ground 
plane. This information can be used to alert the blind user of the obstacle avoidance system of 
any faults or changes to this plane (e.g., curbs, stairs or holes). The structure of the gravity 
estimation algorithm (Fig. 2) follows known solutions of inertial navigation [1, 7]. The 
current estimate of vector g is rotated by the angles measured by the triaxial gyro. To avoid 
the accumulation of angular velocity measurement errors, in successive runs of the algorithm 
(in each frame of image sequence) the current estimate of the vector g is modified by adding 
the weighted value of the current measurement of aINS. 
 

 
 

Fig. 2. Diagram of the algorithm for the gravity vector extraction. 
 
Weighting is done through multiplication by a constant K<<1. The more accurate the estimate 
of the average angular velocity between successive images of the sequence, the smaller may K 
be. In experiments performed on synthetic data K could be set to 0.001. In the real acquisition 
system K values in the range <0.01, 0.02> gave the best results. 
 
5. Integration of image data and signals from inertial sensors in egomotion estimation 

 
The starting point of the presented work was the algorithm for egomotion estimation 

only on the basis of visual data [5]. The inclusion of an inertial sensor system reduced the 
time-consuming computations of the image motion field prediction. It also allowed a better 
estimation of camera motion in the case of low image quality due to poor lighting or as a 
result of image blurring from rapid camera rotations. 

Initial estimation of motion in the image consisted of calculating the coarse motion 
vector [u v]T according to (9), based on the measured angular velocity. In the simulation 
experiment an inclusion of linear speed also gave good results. It was modified according to 
the estimated acceleration a in each image frame. In the experiment with real acceleration 
sensors estimation of a was not sufficiently precise and the prediction was calculated only on 
the basis of signals from the gyroscopes. Effectively, it was possible to narrow the search 
range of corner displacements by imaging methods to 10 points around the predicted 
positions, although the actual motion in the image often exceeded 30 pixels. This approach 
has allowed to reduce the computational cost of motion field search about ten times without 
noticeable deterioration in the algorithm’s effectiveness. 
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Further improvement of the egomotion estimation accuracy was achieved by weighted 
summation of the motion vectors obtained from video and inertial sensor based algorithms: 
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where: VIS – index of the motion vector estimated from image data, INS – index of the motion 
vector estimated from measurements of linear acceleration and angular velocity, cert – 
measure of certainty of the motion vector estimation from the image data.  

The weights of both sources were adjusted dynamically on the basis of measurement 
certainty. The error rate of the inertial system does not depend on the position, orientation, or 
other factors associated with the movement. Camera egomotion estimation from image data is 
sensitive to many things: the camera motion, the movement of objects in the observed scene, 
content of the images, the lighting conditions and even the possible masking of one of the 
cameras. In these situations the number of points moving in the images according to the 
estimated motion model is reduced.  The ratio of the number of corners meeting the model to 
the total number of corners found was used as the measure of certainty cert . Weighted 
summing defined in (10) improved the egomotion estimation accuracy in situations of 
incorrect image acquisition. 

Obviously, more advanced techniques of data fusion from various sources can be 
found. Some of the frequently used approaches use Kalman filtering [9, 10] and the authors 
plan to implement also this technique for comparison. Other methods, such as stochastic 
filtering [11] or particle filtering [12] are very time consuming, so the main advantage of the 
solution developed by the authors is the significantly lower computational complexity. 
 
6. Experimental verification of the developed algorithm 
 
6.1. Algorithm validation on synthetic data 
 

In order to verify the correctness and evaluate the effectiveness of the developed 
algorithm, synthetic image sequences with simulated inertial sensor signals have been 
prepared. The image sequences were created using the POV-Ray 3D modeling environment. 
An urban scene was prepared and filled with typical objects that would be encountered by a 
pedestrian user of the system (Fig. 3). 
 

   

      a)                                                       b) 
Fig. 3. A single frame of image sequence of a synthetic scene a) with the camera aligned with the axes of the 

external reference frame, and b) with the camera after its translation and rotation.  
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The trajectory of the camera was defined and featured simultaneous forward motion 
and rotation. The following parameters of the simulated stereo system were assumed: 
canonical stereo system with pinhole cameras, base B = 0.1 m, focal length f = 443 pixels, and 
512x384 image size. A sequence of one hundred images with a frame rate equal to 10fps was 
generated. Artificial noise was added to the simulated inertial sensors at a level comparable to 
that of the real sensors, integrated in a constructed module and described in [13]. At the same 
time a file was created that contained information about the right camera position relative to 
the static frame of reference for each frame of the sequence. This allowed the determination 
of the displacement estimation error as a function of the frame number. 

An application for quantitative evaluation of the effectiveness of the developed algorithm 
was developed in the MATLAB environment. It allowed to display the measurements from 
the accelerometers, the estimated dynamic acceleration, the gravity vector (Fig. 4), the 
estimated motion parameters (Fig. 5), the movement trajectory and localization errors (Fig. 6). 
Ideal sensor readings (without interference) were generated as a reference, in order to validate 
the simulated measurements and the accuracy of their reading in the application running the 
motion estimation algorithm. The algorithm was set to estimate egomotion on the basis of the 
inertial system only. The K factor was set to a very low value (K = 0.0001). The result of 
motion estimation in these conditions is shown in Fig. 6. Despite the complex nature of the 
analyzed motion, the localization error was no greater than 1% of the traveled distance. 

 

  
Fig. 4. The result of the algorithm for separation 

of the gravity vector and the dynamic accelerations of 
acquisition system as a function of frame number. 

 

Fig. 5. Plots of estimated motion parameters as a 
function of frame number. 

 

 

  

(a) (b) 

Fig. 6. Comparison of the real and estimated path of the stereovision module a), and localization errors b) for 
purely inertial navigation using ideal sensors. 
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The introduction of noise at a level comparable to what can be expected in real sensors 
produces a strong increase in the localization error and its accumulation in time. The 
introduced noise possessed a normal distribution with a zero mean value and a standard 
deviation of 0.2% of the full measurement range. For a sequence of 100 images the 
localization error often exceeded 50% of the traveled route, which eliminates the possibility 
of using the inertial sensors alone for egomotion estimation in the obstacle avoidance system. 

The vision based algorithm for egomotion estimation was also inaccurate in the same 
conditions (Fig. 7). The algorithm suffered lack of robustness during rapid rotations of the 
cameras, which in turn led to an incorrect estimation of the direction of motion and 
accumulation of the localization error. The reason for such large errors was the limit of the 
image motion field search to 10 pixels and the existence of similar regions, falsely matched in 
the image motion search procedure. Increasing the motion field search range is not possible, 
because it greatly increases the demand for computing power, which is squarely proportional 
to the search range. False fits of image regions occur for scenes containing repetitive patterns 
and their likelihood increases with increased search range. 
 A fusion of inertial sensor signals and image data proved to be an attractive alternative 
to the vision based egomotion algorithm. After refinement of the parameters of the 
implementation of the data fusion algorithm, a significant improvement in determination of 
the camera path was obtained (Fig. 8). Using the developed data fusion algorithm for 
egomotion estimation decreased the localization error six times in comparison to the error of 
the purely vision-based egomotion estimation. 

 

  
(a) (b) 

Fig. 7. Comparison of real and estimated path of the stereovision module a) and localization errors b) for a 
purely vision-based egomotion algorithm. 

 

  

(a) (b) 

Fig. 8. Comparison of real and estimated path of the stereovision module a) and localization errors b) for the data 
fusion-based egomotion estimation algorithm. 
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6.2. Algorithm verification on real data 
 
 The precision of the data fusion-based algorithm was also measured for real scenes 
recorded by the constructed stereovision system [13]. The following parameters were used: 
B=0.086 m, camera focal length f = 435 pix, size of images 512x384 pix, frame rate 12 fps. A 
stereovision headmount with digital Pointgrey FLEA cameras was used. A digital video 
stream, produced by the cameras, was captured to a standard PC. 

To measure the acceleration and angular velocity the following inertial sensors were 
used: two integrated, two-axis MG1101B gyroscopes produced by GYRATION and a three-
axis linear acceleration sensor 3LS02AL from STMicroelectronics. Registration of signals 
from the sensors was synchronized with the acquisition of images. The measurement range of 
the linear acceleration sensor is +/-2 g for each axis. The electronic gyroscopes measure the 
angular velocity in the range of +/-180deg/s. 
 The camera was moving on a curved line and was subjected to rotations. The actual 
motion track has been measured by photogrammetric methods [14], by analyzing the recorded 
images of a model scene composed of regular boxes (Fig. 9a). 
 

  
(a) (b) 

 

Fig. 9. Test scene a) and comparison of localization errors for only visual information, and after fusion of the 
image and sensor data b). 

 
Signals from the inertial sensors of the real system demonstrated good performance of the 
data fusion-based algorithm for egomotion estimation. The tracking accuracy has been 
improved 4 to 5 times over the algorithm using purely visual methods (Fig. 9b). In addition, 
the estimation of the gravity vector g was accurate enough to  recognize the horizontal plane. 
The estimation of the separated dynamic acceleration was not very precise due to 
measurement errors and dynamic properies of the accelerometer, so the calculated speed 
could not be used in (9) to predict the image motion field. Still, it was used in the data fusion 
formula (10) and provided an improvement of the egomotion estimation (Fig. 9b). 
 
7. Conclusions 
 
 The integration of image information, angular velocity and linear acceleration allowed 
to efficiently track the position changes of the navigation system in a static scene. In the 
proposed system, the main cause of the observed motion in the images is the rotational 
component of the camera motion in the scene. The use of gyroscopes gave the opportunity for 
rough estimation of the motion of points in the image, allowing to reduce the range of the 
motion field search. The use of accelerometers enabled the estimation of the gravity vector, 
which will be used to recognize the ground plane, which is important from the viewpoint of 
supporting a blind pedestrian in independent travel [15, 16]. 
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